banner
Lar / Notícias / Um experimento de diagnóstico supervisionado de localizações de múltiplas falhas de resistência variável em um sistema de ventilação de mina
Notícias

Um experimento de diagnóstico supervisionado de localizações de múltiplas falhas de resistência variável em um sistema de ventilação de mina

Mar 02, 2024Mar 02, 2024

Scientific Reports volume 13, Artigo número: 5259 (2023) Citar este artigo

322 acessos

1 Citações

Detalhes das métricas

O diagnóstico de localização multifalta variável de resistência (RVMFL) em um sistema de ventilação de mina é uma função essencial do sistema de ventilação inteligente de mina, que é de grande importância para a produção segura da mina. Neste artigo, um modelo de aprendizado de máquina supervisionado baseado em uma árvore de decisão (DT), perceptron multicamada (MLP) e máquina de vetores de suporte de classificação (Rank-SVM) é proposto para diagnóstico de RVMFL em um sistema de ventilação de mina. A viabilidade do método e o desempenho preditivo e capacidade de generalização do modelo foram verificados usando uma validação cruzada de dez vezes de um conjunto de amostras múltiplas de uma rede de ventilação com junta angular em forma de T de 10 ramos e uma rede de ventilação experimental de 54 ramos. A confiabilidade do modelo foi ainda verificada através do diagnóstico do RVMFL do sistema de ventilação experimental. Os resultados mostram que os três modelos, DT, MLP e Rank-SVM, podem ser usados ​​para o diagnóstico de RVMFL em sistemas de ventilação de minas, e o desempenho de previsão e a capacidade de generalização dos modelos MLP e DT têm melhor desempenho do que o Rank-SVM modelo. No diagnóstico de localizações multifaltas do sistema de ventilação experimental, a acurácia diagnóstica do modelo MLP atingiu 100% e a do modelo DT foi de 44,44%. Os resultados confirmam que o modelo MLP supera os três modelos e pode atender às necessidades de engenharia.

A principal função do sistema de ventilação da mina é fornecer ar fresco aos locais subterrâneos que necessitam de vento. Isso dilui e remove gases tóxicos e prejudiciais, como gás, monóxido de carbono e poeira. Também pode criar um bom ambiente de trabalho para garantir a saúde ocupacional dos trabalhadores e a condução normal das atividades produtivas1,2,3. Um bom sistema de ventilação pode efetivamente reduzir a possibilidade de acidentes, como combustão e explosão de gás ou pó de carvão, envenenamento por monóxido de carbono e asfixia em minas4,5. Isto mostra que um sistema de ventilação estável e confiável é extremamente importante para garantir a produção segura da mina. Porém, durante o processo produtivo de uma mina, ocorrem inevitavelmente mudanças repentinas no volume de ar do sistema de ventilação, como o bloqueio da queda de bolhas da estrada, quebra e falha de amortecedores e esvaziamento do silo da mina. A essência desses fenômenos, que resultam em mudanças repentinas no volume de ar da rodovia, é a mudança repentina na resistência ao vento da rodovia. Neste caso, esses fenômenos são definidos como a ocorrência de falha de resistência no sistema de ventilação da mina6. Quando ocorre uma falha de resistência em um sistema de ventilação de uma mina, a distribuição do volume de ar no sistema de ventilação muda significativamente. Isto provavelmente leva a uma diminuição no fornecimento de ar nas faces de trabalho de mineração e escavação, bem como ao acúmulo de gases tóxicos e nocivos em alguns túneis de ventilação. Isso causará sérios riscos e riscos à segurança da mina7.

A rede de ventilação da mina possui boa autoadaptabilidade e robustez, tornando-a adequada para a aplicação de métodos de inteligência artificial e aprendizado de máquina8. Devido ao rápido desenvolvimento da tecnologia inteligente, o método tradicional de contar com pessoal para identificar falhas de resistência variável em sistemas de ventilação foi gradualmente substituído por métodos de diagnóstico inteligentes. O método de diagnóstico inteligente pode economizar recursos humanos e materiais consideráveis. Além disso, economiza muito tempo e se adapta à demanda de eliminação rápida de falhas no sistema de ventilação de minas. Estudos mostraram que algoritmos de inteligência artificial e aprendizado de máquina, como máquina de vetores de suporte (SVM), árvore de decisão (DT), rede neural artificial (ANN), floresta aleatória (RF), algoritmo genético (GA) e perceptron multicamadas (MLP ), são usados ​​para resolver problemas de diagnóstico de falha única em sistemas de ventilação de minas9,10,11,12,13,14. No entanto, devido à especificidade e complexidade das condições das minas subterrâneas, é comum que os sistemas de ventilação de minas tenham falhas de resistência variável em vários locais simultaneamente. Poucos estudos foram realizados sobre diagnóstico e identificação de falhas em múltiplos locais de sistemas de ventilação de minas.

 0 is a nonnegative hyperparameter controlling the magnitude of the penalty./p>